{Reference Type}: Journal Article {Title}: Constructing a strongly interacting Pea-Cod binary protein system by introducing metal cations toward enhanced gelling properties. {Author}: Zou B;Zheng X;Na X;Cheng S;Qie Z;Xu X;Du M;Wu C; {Journal}: Food Res Int {Volume}: 178 {Issue}: 0 {Year}: 2024 Feb {Factor}: 7.425 {DOI}: 10.1016/j.foodres.2024.113955 {Abstract}: Developing prospective plant-animal binary protein systems with desirable nutritional and rheological properties stands as a significant and challenging pursuit within the food industry. Our understanding of the effect of adding salt on the aggregation behavior of food proteins is currently based on single model protein systems, however, this knowledge is rather limited following binary protein systems. Herein, various ionic strength settings are used to mitigate the repulsive forces between pea-cod mixed proteins during the thermal process, which further benefits the construction of a strengthened gel network. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) collectively demonstrated that larger heat-induced protein aggregates were formed, which increased in size with higher ionic strength. In the presence of 2.5 mM CaCl2 and 50 mM NaCl, the disulfide bonds significantly increased from 19.3 to 27.53 and 30.5 μM/g, respectively. Notably, similar aggregation behavior could be found when introducing 2.5 mM CaCl2 or 25 mM NaCl, due to the enhanced aggregation tendency by specific binding of Ca2+ to proteins. With relevance to the strengthened cross-links between protein molecules, salt endowed composite gels with preferable gelling properties, evidenced by increased storage modulus. Additionally, the gelling temperature of mixed proteins decreased below 50 °C at elevated ionic strength. Simultaneously, the proportion of network proteins in composite gels increased remarkably from 82.05 % to 93.61 % and 92.31 % upon adding 5.0 mM CaCl2 and 100 mM NaCl, respectively. The findings provide a valuable foundation for designing economically viable and health-oriented plant-animal binary protein systems.