{Reference Type}: Journal Article {Title}: The role of dynamic, static, and delayed total-body PET imaging in the detection and differential diagnosis of oncological lesions. {Author}: Wu Y;Fu F;Meng N;Wang Z;Li X;Bai Y;Zhou Y;Liang D;Zheng H;Yang Y;Wang M;Sun T; {Journal}: Cancer Imaging {Volume}: 24 {Issue}: 1 {Year}: 2024 Jan 2 {Factor}: 5.605 {DOI}: 10.1186/s40644-023-00649-5 {Abstract}: OBJECTIVE: Commercialized total-body PET scanners can provide high-quality images due to its ultra-high sensitivity. We compared the dynamic, regular static, and delayed 18F-fluorodeoxyglucose (FDG) scans to detect lesions in oncologic patients on a total-body PET/CT scanner.
METHODS: In all, 45 patients were scanned continuously for the first 60 min, followed by a delayed acquisition. FDG metabolic rate was calculated from dynamic data using full compartmental modeling, whereas regular static and delayed SUV images were obtained approximately 60- and 145-min post-injection, respectively. The retention index was computed from static and delayed measures for all lesions. Pearson's correlation and Kruskal-Wallis tests were used to compare parameters.
RESULTS: The number of lesions was largely identical between the three protocols, except MRFDG and delayed images on total-body PET only detected 4 and 2 more lesions, respectively (85 total). FDG metabolic rate (MRFDG) image-derived contrast-to-noise ratio and target-to-background ratio were significantly higher than those from static standardized uptake value (SUV) images (P < 0.01), but this is not the case for the delayed images (P > 0.05). Dynamic protocol did not significantly differentiate between benign and malignant lesions just like regular SUV, delayed SUV, and retention index.
CONCLUSIONS: The potential quantitative advantages of dynamic imaging may not improve lesion detection and differential diagnosis significantly on a total-body PET/CT scanner. The same conclusion applied to delayed imaging. This suggested the added benefits of complex imaging protocols must be weighed against the complex implementation in the future.
CONCLUSIONS: Total-body PET/CT was known to significantly improve the PET image quality due to its ultra-high sensitivity. However, whether the dynamic and delay imaging on total-body scanner could show additional clinical benefits is largely unknown. Head-to-head comparison between two protocols is relevant to oncological management.