{Reference Type}: Journal Article {Title}: Pharmacokinetic model of human exposure to ciprofloxacin through consumption of fish. {Author}: Kum OK;Chan KM;Morningstar-Kywi N;MacKay JA;Haworth IS; {Journal}: Environ Toxicol Pharmacol {Volume}: 106 {Issue}: 0 {Year}: 2024 Mar 30 {Factor}: 5.785 {DOI}: 10.1016/j.etap.2023.104359 {Abstract}: Fluoroquinolones are broad-spectrum antibiotics that accumulate in the environment. To assess human exposure through the food chain, we developed a pharmacokinetic model of fluoroquinolone accumulation in fish and a human pharmacokinetic model to predict gastrointestinal concentrations of ciprofloxacin, a common fluoroquinolone, following consumption of fish. At 70 ng/L ciprofloxacin, the average in North American surface waters, the fish steady-state concentration was calculated to be 7.5 × 10-6 µg/g. Upon human consumption of the FDA-recommended portion of 113 g of fish containing this ciprofloxacin level, the predicted human intestinal concentration was 2 × 10-6 µg/mL. At 4 × 106 ng/L (4 µg/mL) ciprofloxacin, the highest recorded environmental measurement, these numbers were 0.42 µg/g in fish and 0.1 µg/mL in the human intestine. Thus, based on the ciprofloxacin MIC for E. coli of 0.13 µg/mL, background environmental ciprofloxacin levels are unlikely to be problematic, but environmental pollution can result in high intestinal levels that may cause gut dysbiosis and antibiotic resistance.