{Reference Type}: Journal Article {Title}: Gentamicin administration leads to synaptic dysfunction in inner hair cells. {Author}: Li G;Gao Y;Wu H;Zhao T; {Journal}: Toxicol Lett {Volume}: 391 {Issue}: 0 {Year}: 2024 Jan 13 {Factor}: 4.271 {DOI}: 10.1016/j.toxlet.2023.12.007 {Abstract}: Ototoxicity is a major side effect of aminoglycosides, which can cause irreversible hearing loss. Previous studies on aminoglycoside-induced ototoxicity have primarily focused on the loss of sensory hair cells. Recent investigations have revealed that aminoglycosides can also lead to the loss of ribbon synapses in inner hair cells (IHCs). However, the functional implications of ribbon synapse loss and the underlying mechanisms remain unclear. In this study, we intraperitoneally injected C57BL/6 J mice with 300 mg/kg gentamicin once daily for 3, 10, and 20 days. Then, we performed immunofluorescence staining, patch-clamp recording, proteomics analysis and western blotting to characterize the changes in ribbon synapses in IHCs and the associated mechanisms. After gentamicin treatment, the auditory brainstem response (ABR) threshold was elevated, and the ABR wave I amplitude was decreased. We also observed loss of ribbon synapses in IHCs. Interestingly, ribbon synapse loss occurred on both the modiolar and pillar sides of IHCs. Whole-cell patch-clamp recordings in IHCs revealed a reduction in the calcium current amplitude, along with a shifted half-activation voltage and altered calcium voltage dependency. Moreover, exocytosis of IHCs was reduced, consistent with the reduction in the ABR wave I amplitude. Through proteomic analysis, western blotting, and immunofluorescence staining, we found that gentamicin treatment resulted in downregulation of myosin VI, a protein crucial for synaptic vesicle recycling and replenishment in IHCs. Furthermore, we evaluated the kinetics of endocytosis and found a significant reduction in IHC exocytosis, possibly reflecting the impact of myosin VI downregulation on synaptic vesicle recycling. In summary, our findings demonstrate that gentamicin treatment leads to synaptic dysfunction in IHCs, highlighting the important role of myosin VI downregulation in gentamicin-induced synaptic damage.