{Reference Type}: Journal Article {Title}: Temporal Summation of the Thermal Grill Illusion is Comparable to That Observed Following Noxious Heat. {Author}: Horing B;Kerkemeyer M;Büchel C; {Journal}: J Pain {Volume}: 25 {Issue}: 5 {Year}: 2024 May 22 {Factor}: 5.383 {DOI}: 10.1016/j.jpain.2023.11.015 {Abstract}: The thermal grill illusion (TGI) describes a peculiar or even painful percept caused by non-noxious, interlaced warm and cold stimuli. It involves the glutamatergic system and is affected in putatively nociplastic syndromes such as fibromyalgia. The glutamatergic system is also involved in wind-up, that is, the increased activation of spinal neurons following repeated noxious stimulation leading to a temporal summation of perceived stimulus intensity. Here we combined both stimulation methods to further investigate whether non-noxious stimuli as employed in the TGI can lead to a similar summation of perceived stimulus intensity. In an experiment using a full crossover within-subjects design, 35 healthy volunteers received repeated stimuli, either in a thermal grill configuration or simply noxious heat. Both modalities were presented as sequences of 1 lead-in contact, followed by 11 consecutive contacts (each between 1.5 and 3 seconds), with either fast repetition ("wind-up" condition), or 2 slow-repeating control conditions. The main analyses concerned the relative pre-to-post sequence changes to quantify putatively wind-up-related effects. Pain ratings and skin conductance level (SCL) increased more strongly in "wind-up" than in control conditions. Interestingly, wind-up-related effects were of the same magnitude in TGI as compared to the pain control modality. Further, contact-by-contact SCL tracked how the effect emerged over time. These results indicate that although TGI does not involve noxious stimuli it is amenable to temporal summation and wind-up-like processes. Since both phenomena involve the glutamatergic system, the combination of wind-up with the TGI could yield a promising tool for the investigation of chronic pain conditions. PERSPECTIVE: Using thermal stimuli in an experimental protocol to combine 1) the TGI (painful or peculiar percept from simultaneous cold/warm stimulation) and 2) wind-up (increase in stimulus intensity after repeated exposure) holds promise to investigate pain and thermoceptive mechanisms, and chronic pain conditions.