{Reference Type}: Journal Article {Title}: Periostin-targeted SDSSD peptide decorated calcium phosphate nanocomposites incorporation with simvastatin for osteoporosis treatment. {Author}: Pan Z;Zhang Z;Deng X;Hu F;Jia F;Lu J;Zhang X;Yang X;Gao Y;Wang X;Cui X;Xu C;Wu Y; {Journal}: Nanotechnology {Volume}: 35 {Issue}: 7 {Year}: 2023 Dec 1 {Factor}: 3.953 {DOI}: 10.1088/1361-6528/ad0dc9 {Abstract}: The limited options of anabolic drugs restrict their application potential in osteoporosis treatment, despite their theoretical superiority in therapeutic efficacy over antiresorptive drugs. As a prevailing strategy, nano-delivery systems could offer a wider choice of anabolic drugs. In this study, calcium phosphate nanocomposites incorporated with simvastatin (Sim) with periostin-targeting ability were designed and prepared for osteoporosis treatment. Carboxymethyl dextran (CMD) as an anionic and hydrophilic dextran derivative was used to stabilize CaP. In addition, periosteum-targeted peptide (SDSSD) was further grafted on CMD to achieve the bone targeting function. In a one-step coordination assembly strategy, hydrophobic anabolic agent Sim and SDSSD-CMD graft (SDSSD-CMD) were incorporated into the CaP nanoparticles forming SDSSD@CaP/Sim nanocomposites. The resulting SDSSD@CaP/Sim possesses uniform size, great short-term stability and excellent biocompatibility. Moreover, SDSSD@CaP/Sim exhibited a reduced release rate of Sim and showed slow-release behaviour. As anticipated, the nanocomposites exhibited bone bonding capacity in both cellular and animal studies. Besides, SDSSD@CaP/Sim achieved obviously enhanced osteoporosis treatment effect compared to direct injection of Simin vivo. Therefore, our findings highlight the potential of SDSSD-incorporated and CaP-based nanocomposites as a viable strategy to enhance the therapeutic efficacy of anabolic drugs for osteoporosis treatment.