{Reference Type}: Journal Article {Title}: High throughput selection of organic cathode materials. {Author}: López-Carballeira D;Polcar T; {Journal}: J Comput Chem {Volume}: 45 {Issue}: 5 {Year}: 2024 Feb 15 {Factor}: 3.672 {DOI}: 10.1002/jcc.27236 {Abstract}: Efficient and affordable batteries require the design of novel organic electrode materials to overcome the drawbacks of the traditionally used inorganic materials, and the computational screening of potential candidates is a very efficient way to identify prospective solutions and minimize experimental testing. Here we present a DFT high-throughput computational screening where 86 million molecules contained in the PUBCHEM database have been analyzed and classified according to their estimated electrochemical features. The 5445 top-performing candidates were identified, and among them, 2306 are expected to have a one-electron reduction potential higher than 4 V versus (Li/Li+ ). Analogously, one-electron energy densities higher than 800 Whkg-1 have been predicted for 626 molecules. Explicit calculations performed for certain materials show that at least 69 candidates with a two-electron energy density higher than 1300 Whkg-1 . Successful molecules were sorted into several families, some of them already commonly used electrode materials, and others still experimentally untested. Most of them are small systems containing conjugated CO, NN, or NC functional groups. Our selected molecules form a valuable starting point for experimentalists exploring new materials for organic electrodes.