{Reference Type}: Journal Article {Title}: Harnessing the power of exogenous factors to enhance plant resistance to aluminum toxicity; a critical review. {Author}: Yan L;Riaz M;Li S;Cheng J;Jiang C; {Journal}: Plant Physiol Biochem {Volume}: 203 {Issue}: 0 {Year}: 2023 Oct 28 {Factor}: 5.437 {DOI}: 10.1016/j.plaphy.2023.108064 {Abstract}: Aluminum (Al) is the most prevalent element in the earth crust and is toxic to plants in acidic soils. However, plants can address Al toxicity through external exclusion (which prevents Al from entering roots) and internal detoxification (which counterbalances the toxic-Al absorbed by roots). Nowadays, certain categories of exogenously added regulatory factors (EARF), such as nutritional elements, organic acids, amino acids, phytohormones, or biochar, etc. play a critical role in reducing the bioavailability/toxicity of Al in plants. Numerous studies suggest that regulating factors against Al toxicity mediate the expression of Al-responsive genes and transcription factors, thereby regulating the secretion of organic acids, alkalizing rhizosphere pH, modulating cell wall (CW) modifications, improving antioxidant defense systems, and promoting the compartmentalization of non-toxic Al within intracellular. This review primarily discusses recent and older published papers to demonstrate the basic concepts of Al phytotoxicity. Furthermore, we provide a comprehensive explanation of the crucial roles of EARF-induced responses against Al toxicity in plants. This information may serve as a foundation for improving plant resistance to Al and enhancing the growth of susceptible species in acidic soils. And this review holds significant theoretical significance for EARF to improve the quality of acidic soils cultivated land, increase crop yield and quality, and ensure food security.