{Reference Type}: Journal Article {Title}: Polyvinyl Pyrrolidone Induced "Confinement Effect" on PbI2 and the Improvement on Crystallization and Thermal Stability of Perovskite. {Author}: Yu X;Fang Z;Lin S;Wu S;Fang M;Xie H;Kong D;Zhou C; {Journal}: Small {Volume}: 20 {Issue}: 5 {Year}: 2024 Feb 27 {Factor}: 15.153 {DOI}: 10.1002/smll.202306101 {Abstract}: Polyvinyl pyrrolidone is blended in PbI2 with varied concentration, so as to study the coarsening dynamics of perovskite during the two-step growth method. It is observed that polyvinyl pyrrolidone hinders the crystallization of PbI2 and helps to form a more amorphous PbI2 matrix, which then improves perovskite crystallization. As the blending concentration increases from 0 to 2 mM, average crystallite/grain size of perovskite increases from 40.29 nm/0.79 µm to 84.35 nm/1.02 µm while surface fluctuation decreases slightly from 25.64 to 23.96 nm. The observations are caused by the "confinement effect" brought by polyvinyl pyrrolidone on PbI2 . Elevating blending concentration of polyvinyl pyrrolidone results in smaller PbI2 crystallites and more amorphous PbI2 matrix, thus reducing the diffusion/reaction barrier between PbI2 and organic salt and favoring perovskite crystallization. As blending concentration increases from 0 to 2 mM, the device efficiency rises from 19.76 (± 0.60) % to 20.50 (± 0.89) %, with the optimized value up to 22.05%, which is further improved to 24.48% after n-Octylammonium iodide (OAI)-basing surface modification. The study enlarges the scope of "confinement effect" brought by polymer molecules, which is beneficial for efficient and stable perovskite solar cell fabrication.