{Reference Type}: Journal Article {Title}: The complete mitochondrial genome of Morishitium polonicum (Trematoda, Cyclocoelidae) and its phylogenetic implications. {Author}: Liu S;Liu Y;Chen B;Lu X;Jiang D;Geng L;Wang X;Peng K;Du C;Ren T;Yang X; {Journal}: Parasitol Res {Volume}: 122 {Issue}: 11 {Year}: 2023 Nov 9 {Factor}: 2.383 {DOI}: 10.1007/s00436-023-07959-4 {Abstract}: Trematodes can adversely impact the health and survival of wild animals. The trematode family Cyclocoelidae, which includes large digenean bird parasites, lacks molecular analysis, and reclassifications have not been supported. This study produced the first fully assembled and annotated mitochondrial genome sequence for the trematode Morishitium polonicum. The whole length of the M. polonicum (GenBank accession number: OP930879) mitogenome is 14083 bp, containing 22 transfer ribonucleic acids (tRNAs), 2 ribosomal RNAs (rRNAs, rrnL and rrnS), and a noncoding control section (D-loop) 13777 to 13854 bp in length. The 12 PCG areas have 3269 codons and a total length of 10053 bp, which makes up 71.38% of the mitochondrial genome's overall sequence. Most (10/12) of the PCGs that code for proteins begin with ATG, while the nad4L and nad1 genes have a GTG start codon. Phylogenetic analysis using the concatenated nucleotide sequences of 12 PCGs, and the ML tree analysis results showed that M. polonicum is more closely related to with Echinostomatidae and Fasciolidae, which indicates that the family Cyclocoelidae is more closely associated with Echinochasmidae. This study provides mtDNA information, and analysis of mitogenomic structure and evolution. Moreover, we aimed to understand the phylogenetic relationships of this fluke.