{Reference Type}: Journal Article {Title}: Role of diatom-derived oxylipins in organic phosphorus recycling during coastal diatom blooms in the northern South China Sea. {Author}: Wu Z;Li QP;Rivkin RB;Lin S; {Journal}: Sci Total Environ {Volume}: 903 {Issue}: 0 {Year}: 2023 Dec 10 {Factor}: 10.753 {DOI}: 10.1016/j.scitotenv.2023.166518 {Abstract}: Diatom-bacteria interactions and the associated bloom dynamics have not been fully understood in the coastal oceans. Here, we focus on the polyunsaturated aldehydes (PUAs) produced by diatoms in the post-bloom phase and look into their roles in microbial phosphorus (P) recycling outside of a P-limited estuary. The phytoplankton community in the bloom was dominated by PUAs-producing diatoms (Skeletonema costatum, Thalassiosira spp., and Pesudonitzschia delicates) with elevated concentrations of biogenic particulate PUAs. In addition, there were micromolar levels of particle-adsorbed PUAs hotspots with distinct compositions in and out of the bloom determined by a combining large-volume filtration and on-site derivation method. Field experiments were conducted to further assess the responses of particle-attached bacteria (PAB) to different PUAs amendments. We found no differences in the alkaline phosphatase (APase) activity and the abundance of PAB between inside and outside the bloom at a low PUAs dosage (<30 μM). However, for a high PUAs dosage (300 μM), APase activity and PAB growth were reduced significantly outside the bloom but no influences within the bloom. Our findings indicate that the hotspot-level oxylipins may play essential roles in bacterial P-remineralization in P-limited coastal areas. PAB can adapt to the high level of PUAs released by diatoms (or their resulting detritus) and potentially maintain a high rate of organic P recycling during the late stages of diatom blooms. Consequently, the interaction between oxylipin-rich diatoms and bacteria may affect phytoplankton blooms and carbon sequestration in the coastal oceans.