{Reference Type}: Journal Article {Title}: The Preparation, Characterization, and Pressure-Influenced Dihydrogen Interactions of Tetramethylphosphonium Borohydride. {Author}: Jaroń T; {Journal}: Materials (Basel) {Volume}: 16 {Issue}: 15 {Year}: 2023 Jul 29 {Factor}: 3.748 {DOI}: 10.3390/ma16155334 {Abstract}: Tetramethylphosphonium borohydride was synthesized via an ion metathesis reaction in a weakly-coordinating aprotic environment. [(CH3)4P]BH4, in contrast to related [(CH3)4N]+ compounds which tend to crystallize in a tetragonal system, adopts the distorted wurtzite structure (P63mc), resembling some salts containing analogous ions of As and Sb. [(CH3)4P]BH4 decomposes thermally in several endo- and exothermic steps above ca. 240 °C. This renders it more stable than [(CH3)4N]BH4, with a lowered temperature of decomposition onset by ca. 20 °C and solely exothermic processes observed. Raman spectra measured at the 0-10 GPa range indicate that a polymorphic transition occurs within 0.53-1.86 GPa, which is further confirmed by the periodic DFT calculations. The latter suggests a phase transition around 0.8 GPa to a high-pressure phase of [(CH3)4N]BH4. The P63mc phase seems to be destabilized under high pressure by relatively closer dihydrogen interactions, including the C-H…H-C contacts.