{Reference Type}: Journal Article {Title}: Neutral - Eradication of As (III) and Congo red (CR) with green iron oxide (GIO) loaded chitosan(C) - (C - GIO) beads by a non - thermal plasma jet via potential study. {Author}: Shaik AM;Choi EH; {Journal}: Chemosphere {Volume}: 337 {Issue}: 0 {Year}: 2023 Oct 6 {Factor}: 8.943 {DOI}: 10.1016/j.chemosphere.2023.139363 {Abstract}: In this potential - study, the non - thermal atmospheric pressure plasma is utilized for the neutral - eradication of water contaminants. In the air ambient region, plasma induced reactive species, like as OH•, O (O2-), H2O2 (OH•+OH•) & NOx are performed for the oxidative and reductive transformation of AsIII (H3AsO3) to AsV (H2As O4-) & Fe3O4 (Fe3+) (C-GIO) to Fe2O3 (Fe2+). Whereas, the H2O2 & NOx are quantified maximum (max.) in water, which is 144.24 & 111.82 μM, respectively. In the absence of plasma and plasma with C-GIO, the AsIII was more eradicated, which is 64.01 and 100.00%. While, the C - GIO (catalyst) synergistic enhancement was performed and proved by the neutral - degradation of CR. Also, the AsV adsorbed on C-GIO adsorption capacity qmax and redox-adsorption yield were evaluated, which are 1.36 mg/g and 20.80 g/kWh, respectively. In this research, the waste material (GIO) was recycled, modified, and utilized for the neutral - eradication of water contaminates, which are organic (CR) and inorganic (AsIII) toxicants by the controlling of H and OH• under the interaction of plasma with catalyst (C-GIO). However, in this research, plasma can't adopt the acidic, which is controlled by the C-GIO via RONS. Moreover, in this eradicative study, various water pH alignments were performed, from neutral to acidic & neutral & base for toxicants removal. Furthermore, according to WHO norms, the arsenic level was reduced to 0.01 mg/l for environmental safety. The kinetic and isotherm studies were followed by the mono and multi-layer adsorption was performed on the surface of C - GIO beads, which is estimated by the fitting of rate limiting constant R2 ≈ 1. Furthermore, the C-GIO was examined several characterizations alignments, such as crystal, surface, functional, elemental composition, retention time, mass spectrum, and elemental oriented properties. Overall, the suggested hybrid system is an eco-friendly pathway for the natural - eradication of contaminants, such as organic and inorganic compounds via waste material (GIO) recycling, modification, oxidation, reduction, adsorption, degradation, and neutralization phenomenon.