{Reference Type}: Journal Article {Title}: Continuous-Flow Suzuki-Miyaura Coupling in Water and Organic Solvents Promoted by Blends of Stabilized Convoluted Polymeric Palladium Catalysts and Polymeric Auxiliary Materials. {Author}: Zhang Z;Ohno A;Takaya H;Yamada YMA; {Journal}: Chemistry {Volume}: 29 {Issue}: 34 {Year}: 2023 Jun 19 {Factor}: 5.02 {DOI}: 10.1002/chem.202300494 {Abstract}: Given that heterogeneous palladium-catalyzed C-C bond formation reactions under continuous-flow conditions are well suited for the efficient and safe production of pharmaceuticals and functional materials, the development of active and durable catalysts for this purpose is a matter of high practical significance. Here, a previously established molecular convolution methodology was used to synthesize catalysts for Suzuki-Miyaura coupling under flow conditions by blending convoluted polymeric palladium catalysts (prepared from copolymers of 4-vinylpyridine and 4-tert-butylstyrene) and crosslinked polymeric auxiliary materials (prepared from copolymers of divinylbenzene and 4-tert-butylstyrene). The optimal catalyst exhibited high performance and durability and allowed numerous biaryl products such as liquid-crystalline materials, organic electroluminescent materials, and pharmaceuticals to be continuously synthesized with turnover frequencies of up to 238 h-1 . In a demonstration of practical utility, the developed catalytic system was used for the continuous synthesis of two pharmaceuticals (felbinac and fenbufen) in water as the sole solvent.