{Reference Type}: Journal Article {Title}: Transcriptomic responses of peripheral blood mononuclear cells to cyclosporin and etanercept in a female infant with juvenile generalized pustular psoriasis. {Author}: Lin YC;Jeng YC;Aala WJF;Hong YK;Chen PH;Chuang YR;Yang CC;Hsu CK; {Journal}: Exp Dermatol {Volume}: 32 {Issue}: 8 {Year}: 2023 08 17 {Factor}: 4.511 {DOI}: 10.1111/exd.14835 {Abstract}: Generalized pustular psoriasis (GPP) is a rare but severe form of psoriasis. An early onset of the diseases is correlated with mutations among IL36RN, CARD14, AP1S3, MPO and SERPINA3 genes. Systemic biological agents including anti-TNF-α, anti-IL-17, anti-IL-12/IL-23, anti-IL1R, anti-IL1β and anti-IL-36R act as novel treatment methods for GPP. Herein we report a female infant clinically diagnosed with GPP since she was 10-month-old. Results of whole-exome sequencing (WES) and Sanger sequencing revealed a reported heterozygous IL36RN (c.115+6T>C) and another reported heterozygous SERPINA3 frame-shifting variant (c.1247_1248del). Initial cyclosporin treatment for the patient led to a partial remission of the symptoms. However, the patient reached nearly total remission of pustules and erythema after anti-TNF-α inhibitor etanercept treatment. Results of further RNA sequencing (RNA-seq) done on peripheral blood mononuclear cells correlated with the clinical responses, showing that cyclosporin suppressed a portion of the neutrophil-related genes, while most genes associated with neutrophil activation, neutrophil-mediated immunity and degranulation were downregulated by the subsequent etanercept treatment. We report this case to demonstrate WES and RNA-seq in combination could come in handy in reaching a precise diagnosis and in evaluating or even predicting the molecular alterations underlying clinical treatment effectiveness.