{Reference Type}: Journal Article {Title}: Enzymatic sulfation of coelenterazine by human cytosolic aryl sulfotransferase SULT1A1: identification of coelenterazine C2-benzyl monosulfate by LC/ESI-TOF-MS. {Author}: Inouye S;Matsuda K;Nakamura M; {Journal}: Biochem Biophys Res Commun {Volume}: 665 {Issue}: 0 {Year}: 2023 07 12 {Factor}: 3.322 {DOI}: 10.1016/j.bbrc.2023.05.007 {Abstract}: Coelenterazine (CTZ) is known as a light-emitting source for the bioluminescence reaction in marine organisms. CTZ has two phenolic hydroxy groups at the C2-benzyl and C6-phenyl positions, and a keto-enol type hydroxy group at the C3-position in the core structure of imidazopyrazinone (= 3,7-dihydroimidazopyrazin-3-one). These hydroxy groups in CTZ could be sulfated by sulfotransferase(s), and the sulfates of Watasenia luciferin (CTZ disulfate at the C2- and C6-positions) and Renilla pre-luciferin (CTZ 3-enol sulfate) have been identified in marine organisms. To characterize the sulfation process of CTZ, human cytosolic aryl sulfotransferase SULT1A1 (SUTase) was used as a model enzyme. The sulfated products catalyzed by SUTase with 3'-phosphoadenosine 5'-phosphosulfate (PAPS) were analyzed by LC/ESI-TOF-MS. The product was the monosulfate of CTZ and identified as the C2-benzyl sulfate of CTZ (CTZ C2-benzyl monosulfate), but CTZ disulfate, CTZ 3-enol sulfate, and CTZ C6-phenyl monosulfate were not detected. The non-enzymatic oxidation products of dehydrocoelenterazine (dCTZ, dehydrogenated derivative of CTZ), coelenteramide (CTMD), and coelenteramine (CTM) from CTZ were also identified as their monosulfates.