{Reference Type}: Journal Article {Title}: Elevation of HO-1 expression protects the intestinal mucosal barrier in severe acute pancreatitis via inhibition of the MLCK/p-MLC signaling pathway. {Author}: Zhang J;Jiang Y;Li H;Wang J;Li C;Zhang D; {Journal}: Exp Cell Res {Volume}: 424 {Issue}: 2 {Year}: 03 2023 15 {Factor}: 4.145 {DOI}: 10.1016/j.yexcr.2023.113508 {Abstract}: In severe acute pancreatitis (SAP), intestinal mucosal barrier damage can cause intestinal bacterial translocation and induce or aggravate systemic infections. Heme oxygenase-1 (HO-1) is a validated antioxidant and cytoprotective agent. This research aimed to investigate the effect and mechanism of HO-1 on SAP-induced intestinal barrier damage in SAP rats. Healthy adult male Sprague-Dawley rats were randomly separated into the sham-operated group, SAP group, SAP + Hemin group, and SAP + Znpp group. The rat model of SAP was established by retrograde injection of sodium taurocholate (5%) into the biliopancreatic duct. Hemin (a potent HO-1 activator) and Znpp (a competitive inhibitor of HO-1) were injected intraperitoneally in the selected groups 24 h before SAP. Serum and intestinal tissue samples were collected for analysis after 24 h in each group. Hemin pretreatment significantly reduced systemic inflammation, intestinal oxidative stress, and intestinal epithelial apoptosis in SAP by increasing HO-1 expression. Meanwhile, pretreatment with Hemin abolished the inhibitory effect on the expression of the tight junction proteins and significantly inhibited the activation of the MLCK/P-MLC signaling pathway. Conversely, ZnPP completely reversed these effects. Our study indicates that upregulation of HO-1 expression attenuates the intestinal mucosal barrier damage in SAP. The protective effect of HO-1 on the intestine is attributed to MLCK/p-MLC signaling pathway inhibition.