{Reference Type}: Journal Article {Title}: The default mode network is affected in the early stage of simian immunodeficiency virus infection: a longitudinal study. {Author}: Tang ZC;Liu JJ;Ding XT;Liu D;Qiao HW;Huang XJ;Zhang H;Tian J;Li HJ; {Journal}: Neural Regen Res {Volume}: 18 {Issue}: 7 {Year}: Jul 2023 {Factor}: 6.058 {DOI}: 10.4103/1673-5374.360244 {Abstract}: Acquired immune deficiency syndrome infection can lead to cognitive dysfunction represented by changes in the default mode network. Most recent studies have been cross-sectional and thus have not revealed dynamic changes in the default mode network following acquired immune deficiency syndrome infection and antiretroviral therapy. Specifically, when brain imaging data at only one time point are analyzed, determining the duration at which the default mode network is the most effective following antiretroviral therapy after the occurrence of acquired immune deficiency syndrome. However, because infection times and other factors are often uncertain, longitudinal studies cannot be conducted directly in the clinic. Therefore, in this study, we performed a longitudinal study on the dynamic changes in the default mode network over time in a rhesus monkey model of simian immunodeficiency virus infection. We found marked changes in default mode network connectivity in 11 pairs of regions of interest at baseline and 10 days and 4 weeks after virus inoculation. Significant interactions between treatment and time were observed in the default mode network connectivity of regions of interest pairs area 31/V6.R and area 8/frontal eye field (FEF). L, area 8/FEF.L and caudal temporal parietal occipital area (TPOC).R, and area 31/V6.R and TPOC.L. ART administered 4 weeks after infection not only interrupted the progress of simian immunodeficiency virus infection but also preserved brain function to a large extent. These findings suggest that the default mode network is affected in the early stage of simian immunodeficiency virus infection and that it may serve as a potential biomarker for early changes in brain function and an objective indicator for making early clinical intervention decisions.