{Reference Type}: Journal Article {Title}: A systemic review of T-cell epitopes defined from the proteome of SARS-CoV-2. {Author}: Jin X;Liu X;Shen C; {Journal}: Virus Res {Volume}: 324 {Issue}: 0 {Year}: 01 2023 15 {Factor}: 6.286 {DOI}: 10.1016/j.virusres.2022.199024 {Abstract}: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection remains in a global pandemic, and no eradicative therapy is currently available. Host T cells have been shown to play a crucial role in the antiviral immune protection and pathology in Coronavirus disease 2019 (COVID-19) patients; thus, identifying sufficient T-cell epitopes from the SARS-CoV-2 proteome can contribute greatly to the development of T-cell epitope vaccines and the precise evaluation of host SARS-CoV-2-specific cellular immunity. This review presents a comprehensive map of T-cell epitopes functionally validated from SARS-CoV-2 antigens, the human leukocyte antigen (HLA) supertypes to present these epitopes, and the strategies to screen and identify T-cell epitopes. To the best of our knowledge, a total of 1349 CD8+ T-cell epitopes and 790 CD4+ T-cell epitopes have been defined by functional experiments thus far, but most are presented by approximately twenty common HLA supertypes, such as HLA-A0201, A2402, B0702, DR15, DR7 and DR11 molecules, and 74-80% of the T-cell epitopes are derived from S protein and nonstructural protein. These data provide useful insight into the development of vaccines and specific T-cell detection systems. However, the currently defined T-cell epitope repertoire cannot cover the HLA polymorphism of major populations in an indicated geographic region. More research is needed to depict an overall landscape of T-cell epitopes, which covers the overall SARS-CoV-2 proteome and global patients.