{Reference Type}: Journal Article {Title}: Decreased Microglia in Pax2 Mutant Mice Leads to Impaired Learning and Memory. {Author}: Lv N;Wang Y;Liu Y;Tang J;Lei Q;Wang Y;Wei H; {Journal}: ACS Chem Neurosci {Volume}: 13 {Issue}: 16 {Year}: 08 2022 17 {Factor}: 5.78 {DOI}: 10.1021/acschemneuro.2c00352 {Abstract}: Impaired learning and memory ability is one of the characteristics of a variety of neurological diseases, and its molecular mechanisms are complex and diverse and are regulated by a variety of factors. It is generally believed that synaptic plasticity plays an important role in the process of learning and memory. The protein encoded by the Pax2 gene is a transcription factor involved in neuron migration and cell fate determination during neural development. Mice knocked out of BDNF in the Pax2 lineage-derived interneuron precursor exhibited learning disabilities and severe cognitive impairment. In this study, Pax2 heterozygous gene (Pax2+/- mice) deletion mice were used as the research objects and behavioral tests were used to observe the effect of Pax2 gene deletion on learning and memory ability; morphological and molecular biological methods were used to observe the effect of Pax2 gene deletion on the neural structure. Single-cell transcriptome sequencing was used to observe the cell subtypes and differentially expressed genes (DEGs) and signaling pathways affected by Pax2 gene deletion and the possible molecular mechanisms. The results showed that Pax2+/- mice had impaired learning and memory ability, abnormal synaptic structure, and significantly reduced number of microglia clusters, and DEGs were associated with pro-inflammatory chemokines. Finally, we speculate that Pax2 gene deletion may lead to abnormal chemokines and chemokine receptors by affecting microglia.