{Reference Type}: Journal Article {Title}: The repair effect and mechanism of continuous passive motion on osteoarthritis in a rabbit model. {Author}: Zuo B;Wang Z; {Journal}: Am J Transl Res {Volume}: 14 {Issue}: 5 {Year}: 2022 {Factor}: 3.94 {Abstract}: OBJECTIVE: To observe the effect of continuous passive motion (CPM) on osteoarthritis in a rabbit model and explore its mechanism.
METHODS: Thirty healthy rabbits with a total of 60 knee joints were randomized into three groups. Group A had CPM for 8 h daily, starting on postoperative day 1 and free movement in the cage, group B received CPM for 2 h daily, starting on postoperative day 1 and free movement in the cage, and group C only had free movement in the cage. Mankin's score was used to compare the gross morphology of the rabbit's knee joint. Malondialdehyde (MDA) and superoxide dismutase (SOD) were measured by RT-PCR and western blot method before and after intervention.
RESULTS: The Mankin's scores of rabbits in groups A and B were significantly lower than those in group C, and those in group A were lower than those in group B at week 4 and week 12 of intervention (P<0.05). At week 4 of the CPM intervention, the gross morphological scores were the highest in group A, followed by group B, and the lowest in group C (P<0.05). At week 12 of CPM intervention, the gross morphological scores of the knee joints in groups A and B were increased again, which were the highest in group A, followed by group B, and the lowest in group C (P<0.05). At week 12 of intervention, MDA levels in group A were lower than those in groups B and C, whereas SOD levels in group A were higher than those in groups B and C.
CONCLUSIONS: CPM can effectively improve the symptoms of knee osteoarthritis in rabbits and increase the mobility of the joints, and the mechanism may be related to the ability of CPM to reduce the overproduction of peroxide at the lesion site.