{Reference Type}: Journal Article {Title}: Raf kinase inhibitory protein reduces bradykinin receptor desensitization. {Author}: Chivers SB;Brackley AD;Jeske NA; {Journal}: J Neurochem {Volume}: 162 {Issue}: 2 {Year}: 07 2022 {Factor}: 5.546 {DOI}: 10.1111/jnc.15614 {Abstract}: Inflammatory hyperalgesia represents a nociceptive phenotype that can become persistent in nature through dynamic protein modifications. However, a large gap in knowledge exists concerning how the integration of intracellular signaling molecules coordinates a persistent inflammatory phenotype. Herein, we demonstrate that Raf Kinase Anchoring Protein (RKIP) interrupts a vital canonical desensitization pathway to maintain bradykinin (BK) receptor activation in primary afferent neurons. Biochemical analyses of primary neuronal cultures indicate bradykinin-stimulated PKC phosphorylation of RKIP at Ser153. Furthermore, BK exposure increases G-protein Receptor Kinase 2 (GRK2) binding to RKIP, inhibiting pharmacological desensitization of the BK receptor. Additional studies found that molecular RKIP down-regulation increases BK receptor desensitization in real-time imaging of primary afferent neurons, identifying a key pathway integrator in the desensitization process that controls multiple GRK2-sensitive G-protein coupled receptors. Therefore, RKIP serves as an integral scaffolding protein that inhibits BK receptor desensitization.