{Reference Type}: Journal Article {Title}: The influence of antioxidant dietary-derived polyphenolic combination on breast cancer: Molecular study. {Author}: Alqarni AA;Alamoudi AA;Allam RM;Ajabnoor GM;Harakeh SM;Al-Abd AM;Alqarni AA;Alamoudi AA;Allam RM;Ajabnoor GM;Harakeh SM;Al-Abd AM; {Journal}: Biomed Pharmacother {Volume}: 149 {Issue}: 0 {Year}: May 2022 {Factor}: 7.419 {DOI}: 10.1016/j.biopha.2022.112835 {Abstract}: Breast cancer remains a leading cause of female mortality worldwide. Therefore, novel complementary treatments have been sought. Recently, there has been a growing interest in investigating the possible complementary effects of polyphenolic compounds against various malignancies. In the present study, using MCF-7 and MDA-MB-231 human breast adenocarcinoma cells, the anticancer efficacy of a polyphenolic mixture (PFM) was investigated. PFM is composed of curcumin, resveratrol, epigallocatechin gallate, and quercetin. PFM treatment led to a dose-dependent inhibition of cell proliferation, with IC50 values of 25.9 ± 3 µg/ml and 29.4 ± 0.9 µg/ml for MCF-7 and MDA-MB-231 cells, respectively. In addition, PFM induced apoptosis in MDA-MB-231 cells and cell cycle arrest at the S phase in MCF-7 cells. Using RT-qPCR, PFM treatment was observed to result in significant downregulation of the oncogenic miR-155 (P < 0.05), as well as significant downregulation of the rate-limiting glycolytic enzyme, hexokinase 2 (HK2) (P < 0.05), while upregulating the expression of the zinc finger E-box binding homeobox 2 gene (P < 0.01). PFM was also found to exert an anti-migration effect in breast cancer cells using the wound healing assay, as well as significantly (P < 0.05) increasing the median survival of Ehrlich ascites carcinoma (EAC) tumor-bearing mice. These results suggest that PFM possesses potential antitumor effects against breast cancer. A possible mechanism of action could be due to PFM's effect in modulating the expression of the glycolytic enzyme HK2 through suppression of miR-155 in MCF-7 cells. Combining polyphenolic compounds that interact with one another could result in synergistic effects that potentially target various tumour hallmarks.