{Reference Type}: Case Reports {Title}: Pediatric awake epilepsy surgery: Intraoperative language mapping utilizing digital video gaming and electrocorticography. {Author}: Alotaibi F;Mir A;Al-Faraidy M;Jallul T;Al-Baradie R;Alotaibi F;Mir A;Al-Faraidy M;Jallul T;Al-Baradie R; {Journal}: Epilepsy Behav Rep {Volume}: 17 {Issue}: 0 {Year}: 2022 暂无{DOI}: 10.1016/j.ebr.2021.100521 {Abstract}: Intraoperative functional language mapping is vital to minimize the risks associated with surgical removal of the seizure onset zone in selected patients with epilepsy. In children, this method has been reported extraoperatively by the placement of invasive electrodes to map the language area and monitor epileptic activity. It is difficult from a technical standpoint to perform an awake craniotomy and language mapping in young children under 10 years of age. Here we report a 9-year-old boy suffering from drug-resistant non-lesional epilepsy who underwent extraoperative and intraoperative electrical stimulation with successful identification of Broca's language area. Electrocorticography (ECOG) was applied intraoperatively in a continuous manner utilizing grid electrodes before the skin opening. We found that the use of visual digital video games facilitated extraoperative and intraoperative cortical mapping. Cortical language inhibition by electrical stimulation was elicited at an amplitude of 7 mA (100 μs single-phase duration and 50 Hz pulse width). Resection of the seizure onset zone was completed safely. The post-resection ECOG revealed the disappearance of epileptogenic electrographic discharges at the seizure onset contacts and at other involved contacts in the epileptogenic zone. After surgery, the child recovered well with no language deficits and remained seizure-free. The child remembered only the video game test that was performed intraoperatively. This report highlights safety strategies for awake language mapping in pediatrics and the importance of the perioperative use of a visual digital video game and continuous ECOG, in addition to the use of targeted language cortex stimulation to facilitate faster and safer intraoperative language mapping under awake conditions in this age group.