{Reference Type}: Journal Article {Title}: The role of microRNA-155 in glomerular endothelial cell injury induced by high glucose. {Author}: He K;Chen Z;Zhao J;He Y;Deng R;Fan X;Wang J;Zhou X; {Journal}: Mol Biol Rep {Volume}: 49 {Issue}: 4 {Year}: Apr 2022 {Factor}: 2.742 {DOI}: 10.1007/s11033-021-07106-1 {Abstract}: OBJECTIVE: To investigate the role of microRNA-155-5p on apoptosis and inflammatory response in human renal glomerular endothelial cells (HRGEC) cultured with high glucose.
METHODS: The primary HRGEC were mainly studied, light microscopy was used to detect changes in cell morphology. Quantitative Real Time-Polymerase Chain Reaction, Western Blot, immunofluorescence were aimed to observe the mRNA and protein expression levels of target gene ETS-1, downstream factors VCAM-1, MCP-1 and cleaved caspase-3 in each group after high glucose treatment as well as transfection with miR-155 mimics or inhibitor.
RESULTS: The expression of inflammatory factors and apoptosis of HRGEC cells increased under high glucose treatment. Compared with normal-glucose treatment, the expression of microRNA-155 markedly increased in HRGECs treated with high-glucose, as well as the mRNA and protein levels of ETS-1, VCAM-1, MCP-1 and cleaved caspase-3. Overexpression of microRNA-155 remarkably downregulated mRNA and protein levels of ETS-1, VCAM-1, MCP-1 and cleaved caspase-3, whereas miRNA-155 knockdown upregulated their levels. In addition, HRGEC cells were transfected with miR-155 mimics and ETS-1 siRNA with high glucose stimulation. The expression of ETS-1 was positively correlated with the expression of downstream factors VCAM-1 and MCP-1. These results suggest that ETS-1 can mediate endothelial cell inflammation by regulating VCAM-1 and MCP-1.
CONCLUSIONS: MiR-155 can negatively regulate the expression of target gene ETS-1 and its downstream factors VCAM-1, MCP-1 and cleaved caspase-3, thus mediating the inflammatory response and apoptosis of HRGEC.