{Reference Type}: Journal Article {Title}: GGCX variants leading to biallelic deficiency to γ-carboxylate GRP cause skin laxity in VKCFD1 patients. {Author}: Ghosh S;Kraus K;Biswas A;Müller J;Forin F;Singer H;Höning K;Hornung V;Watzka M;Oldenburg J;Czogalla-Nitsche KJ; {Journal}: Hum Mutat {Volume}: 0 {Issue}: 0 {Year}: Nov 2021 24 {Factor}: 4.7 {DOI}: 10.1002/humu.24300 {Abstract}: γ-Glutamyl carboxylase (GGCX) catalyzes the γ-carboxylation of 15 different vitamin K dependent (VKD) proteins. Pathogenic variants in GGCX cause a rare hereditary bleeding disorder called Vitamin K dependent coagulation factor deficiency type 1 (VKCFD1). In addition to bleedings, some VKCFD1 patients develop skin laxity and skeletal dysmorphologies. However, the pathophysiological mechanisms underlying these non-hemorrhagic phenotypes remain elusive. Therefore, we have analyzed 20 pathogenic GGCX variants on their ability to γ-carboxylate six non-hemostatic VKD proteins in an in vitro assay, where GGCX variants were expressed in GGCX-/- cells and levels of γ-carboxylated co-expressed VKD proteins were detected by a functional ELISA. We observed that GGCX variants causing markedly reduced γ-carboxylation of Gla rich protein (GRP) in vitro were reported in patients with skin laxity. Reduced levels of γ-carboxylated Matrix gla protein (MGP) are not exclusive for causing skeletal dysmorphologies in VKCFD1 patients. In silico docking of vitamin K hydroquinone on a GGCX model revealed a binding site, which was validated by in vitro assays. GGCX variants affecting this site result in disability to γ-carboxylate VKD proteins and hence are involved in the most severe phenotypes. This genotype-phenotype analysis will help to understand the development of non-hemorrhagic phenotypes and hence improve treatment in VKCFD1 patients.