{Reference Type}: Journal Article {Title}: Targeting the Endocannabinoid System in the Treatment of Posttraumatic Stress Disorder: A Promising Case of Preclinical-Clinical Translation? {Author}: Mayo LM;Rabinak CA;Hill MN;Heilig M; {Journal}: Biol Psychiatry {Volume}: 91 {Issue}: 3 {Year}: 02 2022 1 {Factor}: 12.81 {DOI}: 10.1016/j.biopsych.2021.07.019 {Abstract}: The endocannabinoid (eCB) system is one the most ubiquitous signaling systems of the brain and offers a rich pharmacology including multiple druggable targets. Preclinical research shows that eCB activity influences functional connectivity between the prefrontal cortex and amygdala and thereby influences an organism's ability to cope with threats and stressful experiences. Animal studies show that CB1 receptor activation within the amygdala is essential for extinction of fear memories. Failure to extinguish traumatic memories is a core symptom of posttraumatic stress disorder, suggesting that potentiating eCB signaling may have a therapeutic potential in this condition. However, it has been unknown whether animal findings in this domain translate to humans. Data to inform this critical question are now emerging and are the focus of this review. We first briefly summarize the biology of the eCB system and the animal studies that support its role in fear extinction and stress responding. We then discuss the pharmacological eCB-targeting strategies that may be exploited for therapeutic purposes: direct CB1 receptor activation, using Δ9-tetrahydrocannabinol or its synthetic analogs; or indirect potentiation, through inhibition of eCB-degrading enzymes, the anandamide-degrading enzyme fatty acid amide hydrolase; or the 2-AG (2-arachidonoyl glycerol)-degrading enzyme monoacylglycerol lipase. We then review recent human data on direct CB1 receptor activation via Δ9-tetrahydrocannabinol and anandamide potentiation through fatty acid amide hydrolase blockade. The available human data consistently support a translation of animal findings on fear memories and stress reactivity and suggest a potential therapeutic utility in humans.