{Reference Type}: Journal Article {Title}: In vitro invasiveness and antimicrobial resistance of Salmonella enterica subspecies isolated from wild and captive reptiles. {Author}: McWhorter A;Owens J;Valcanis M;Olds L;Myers C;Smith I;Trott D;McLelland D; {Journal}: Zoonoses Public Health {Volume}: 68 {Issue}: 5 {Year}: 08 2021 {Factor}: 2.954 {DOI}: 10.1111/zph.12820 {Abstract}: Reptiles are carriers of Salmonella and can intermittently shed bacteria in their faeces. Contact with snakes and lizards is a source of human salmonellosis. Here, two populations of reptiles, wild and captive were surveyed for Salmonella. One hundred thirty wild-caught reptiles were sampled for Salmonella including 2 turtle, 9 snake and 31 lizard species. Fifty-two of 130 (40%) animals were Salmonella positive: one of 5 (20%) turtles, 7 of 14 (50%) snakes and 44 of 111 (39.6%) lizards. One hundred twenty-two reptiles were sampled from a zoo collection including 1 turtle, 6 tortoise, 9 lizard, 14 snake and 1 crocodile species. Forty-two of 122 (34.4%) captive reptiles sampled were Salmonella positive. Salmonella was most commonly isolated from lizards and snakes. Fifteen serotypes were identified from zoo and 19 from wild-caught reptiles and most were members of subspecies enterica (I), salamae (II), arizonae (IIIa) or diarizonae (IIIb). Antimicrobial susceptibility testing was conducted on all Salmonella isolates; only two exhibited resistance, a Salmonella subsp. (II) ser. 21:z10 :z6 (Wandsbek) isolate cultured from a wild-caught reptile and a Salmonella Typhimurium DT120 isolated from a captive snake. The invasive capacity of reptile-associated Salmonella strains into cultured human intestinal epithelial (Caco2) and mouse macrophages cell lines (J774A.1) was also investigated. All isolates were invasive into both cell lines. Significant (P ≤ 0.001) variability in invasiveness into polarized Caco2 cells was observed. Salmonella Eastbourne exhibited the highest invasiveness into Caco2 cells and Salmonella Chester the lowest, with mean per cent recoveries of 19.99 ± 0.32 and 1.23 ± 0.30, respectively. Invasion into J774A.1 macrophages was also variable but was not significant. Salmonella subsp. II ser. 17:g,t:- (Bleadon) exhibited the highest invasiveness into J774A.1 with a mean per cent recovery of 10.19 ± 0.19. Thus, reptile-associated Salmonellae are likely to have different capacities to cause disease in humans.