{Reference Type}: Journal Article {Title}: Producing physicochemical property consensus alphavirus protein antigens for broad spectrum vaccine design. {Author}: Baker WS;Negi S;Braun W;Schein CH; {Journal}: Antiviral Res {Volume}: 182 {Issue}: 0 {Year}: 10 2020 {Factor}: 10.103 {DOI}: 10.1016/j.antiviral.2020.104905 {Abstract}: There is a pressing need for new vaccines against alphaviruses, which can cause fatal encephalitis (Venezuelan equine encephalitis virus (VEEV) and others) and severe arthralgia (e.g. Chikungunya virus, CHIKV). These positive-strand RNA viruses are diverse and evolve rapidly, meaning that the sequence of any vaccine should cover multiple strains that may be quite different from any previous isolate. Here, consensus proteins were produced to represent the common physicochemical properties (PCPs) of the epitope rich, B domain of the E2 envelope protein. PCP-consensus proteins were based on multiple strains of VEEV (VEEVcon) and CHIKV (CHIKVcon) or the conserved PCPs of 24 different alphaviruses (AllAVcon). The AllAVcon was altered to include binding sites for neutralizing antibodies of both VEEV and CHIKV strains (Mosaikcon). All four designed proteins were produced solubly in E. coli and purified. They formed the β-strand core expected from experimental structures of this region of the wild type E2 proteins as indicated by circular dichroism (CD) spectra. Furthermore, the CHIKVcon protein bound to a structure dependent, CHIKV neutralizing monoclonal antibody. The AllAVcon and Mosaikcon proteins bound to polyclonal antibodies generated during natural infection with either VEEV or CHIKV, indicating they contained epitopes of both serotypes. The Mosaikcon antigen induced antibodies in rabbit sera that recognized both the VEEVcon and CHIKVcon spike proteins. These PCP-consensus antigens are promising starting points for novel, broad-spectrum alphavirus vaccines.