{Reference Type}: Journal Article {Title}: Surface acidity and basicity of Mg/Al hydrotalcite for 2, 4-dichlorophenoxyacetic acid degradation with ozone: Mineralization, mechanism, and implications to practical water treatment. {Author}: Tian X;Zhu J;Tang M;Wang D;Nie Y;Yang L;Dai C;Yang C;Lu L; {Journal}: J Hazard Mater {Volume}: 402 {Issue}: 0 {Year}: Jan 2021 15 {Factor}: 14.224 {DOI}: 10.1016/j.jhazmat.2020.123475 {Abstract}: The Mg/Al hydrotalcite (Mg/Al HT) was firstly used as a heterogeneous ozonation catalyst and 2,4-dichlorophenoxyacetic acid (2,4-D) was efficiently degraded by Mg3/Al HT with a COD removal of 68 %. It was higher than that of α-FeOOH with a COD removal of 50 %. The effects of Mg/Al atomic ratio, phosphate and pyrrole on the ozonation performance of Mg/Al HTs were also investigated. The X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption experiment and temperature programmed desorption of adsorbed CO2 or NH3 were used to characterize the surface properties of Mg/Al HT. The surface acidity and basity was proven to be responsible to the excellent ozonation activity of Mg/Al HT. The results of electron spin resonance (ESR) analysis and probe experiments confirmed that OH, O2- and 1O2 were involved in the 2,4-D degradation process and their contributions are as followed: OH > O2- > 1O2. The synergistic effect of surface acid (ozone adsorption center) and base sites (catalytic center) determines Mg/Al HT in the enhanced catalytic ozone decomposition into reactive species. More important, the transition metal free based Mg/Al HTs is steady, non-toxic, naturally abundant and environment friendly, which provided a promising alternative in practical water treatment by catalytic ozonation.