{Reference Type}: Journal Article {Title}: Incorporating Case-Based Reasoning for Radiation Therapy Knowledge Modeling: A Pelvic Case Study. {Author}: Sheng Y;Zhang J;Wang C;Yin FF;Wu QJ;Ge Y; {Journal}: Technol Cancer Res Treat {Volume}: 18 {Issue}: 0 {Year}: 01 2019 1 {Factor}: 2.876 {DOI}: 10.1177/1533033819874788 {Abstract}: Knowledge models in radiotherapy capture the relation between patient anatomy and dosimetry to provide treatment planning guidance. When treatment schemes evolve, existing models struggle to predict accurately. We propose a case-based reasoning framework designed to handle novel anatomies that are of same type but vary beyond original training samples. A total of 105 pelvic intensity-modulated radiotherapy cases were analyzed. Eighty cases were prostate cases while the other 25 were prostate-plus-lymph-node cases. We simulated 4 scenarios: Scarce scenario, Semiscarce scenario, Semiample scenario, and Ample scenario. For the Scarce scenario, a multiple stepwise regression model was trained using 85 cases (80 prostate, 5 prostate-plus-lymph-node). The proposed workflow started with evaluating the feature novelty of new cases against 5 training prostate-plus-lymph-node cases using leverage statistic. The case database was composed of a 5-case dose atlas. Case-based dose prediction was compared against the regression model prediction using sum of squared residual. Mean sum of squared residual of case-based and regression predictions for the bladder of 13 identified outliers were 0.174 ± 0.166 and 0.459 ± 0.508, respectively (P = .0326). For the rectum, the respective mean sum of squared residuals were 0.103 ± 0.120 and 0.150 ± 0.171 for case-based and regression prediction (P = .1972). By retaining novel cases, under the Ample scenario, significant statistical improvement was observed over the Scarce scenario (P = .0398) for the bladder model. We expect that the incorporation of case-based reasoning that judiciously applies appropriate predictive models could improve overall prediction accuracy and robustness in clinical practice.