{Reference Type}: Journal Article {Title}: Phosphatidylinositol-5-phosphate 4-kinase gamma accumulates at the spindle pole and prevents microtubule depolymerization. {Author}: Lin TC;Kuo HH;Wu YC;Pan TS;Yih LH; {Journal}: Cell Div {Volume}: 14 {Issue}: 0 {Year}: 2019 {Factor}: 2.826 {DOI}: 10.1186/s13008-019-0053-9 {Abstract}: UNASSIGNED: A previous screen of a human kinase and phosphatase shRNA library to select genes that mediate arsenite induction of spindle abnormalities resulted in the identification of phosphatidylinositol-5-phosphate 4-kinase type-2 gamma (PIP4KIIγ), a phosphatidylinositol 4,5-bisphosphate (PIP2)-synthesizing enzyme. In this study, we explored how PIP4KIIγ regulates the assembly of mitotic spindles.
UNASSIGNED: PIP4KIIγ accumulates at the spindle pole before anaphase, and is required for the assembly of functional bipolar spindles. Depletion of PIP4KIIγ enhanced the spindle pole accumulation of mitotic centromere-associated kinesin (MCAK), a microtubule (MT)-depolymerizing kinesin, and resulted in a less stable spindle pole-associated MT. Depletion of MCAK can ameliorate PIP4KIIγ depletion-induced spindle abnormalities. In addition, PIP2 binds to polo-like kinase (PLK1) and reduces PLK1-mediated phosphorylation of MCAK. These results indicate that PIP4KIIγ and PIP2 may negatively regulate the MT depolymerization activity of MCAK by reducing PLK1-mediated phosphorylation of MCAK. Consequently, depletion of PLK1 has been shown to counteract the PIP4KIIγ depletion-induced instability of spindle pole-associated MT and cell resistance to arsenite.
UNASSIGNED: Our current results imply that PIP4KIIγ may restrain MT depolymerization at the spindle pole through attenuating PLK1-mediated activation of MCAK before anaphase onset.