{Reference Type}: Journal Article {Title}: Sediment records of polybrominated diphenyl ethers (PBDEs) in Huaihe River, China: Implications for historical production and household usage of PBDE-containing products. {Author}: Da C;Wang R;Ye J;Yang S; {Journal}: Environ Pollut {Volume}: 254 {Issue}: 0 {Year}: Nov 2019 {Factor}: 9.988 {DOI}: 10.1016/j.envpol.2019.07.123 {Abstract}: In recent decades, rapid development of industrialization and urbanization caused adverse impact on the aqueous ecology and environment of the Huaihe River basin, China. In this work, three 210Pb-dated sediment cores extracted from the middle reach of Huaihe River in Anhui Province, China were analyzed to elucidate the temporal trends and sources of polybrominated diphenyl ethers (PBDEs). Source diagnostics indicated that commercial Deca-BDE, Penta-BDE and Octa-BDE products and debromination of higher brominated BDE compounds were likely the PBDE sources in the Huaihe River. The prevalence of BDE-47 in the sediment cores was attributed to the extensive use of commercial Bromkal 70-5DE and Bromkal DE-71 in the region. BDE-28 was another congener that was prevalent in all sediment samples, suggesting that reductive debromination occurred in the sediments. Dramatic increase of PBDE concentrations in both three cores since the post-1980s could be attributed to the rapid expansion of production of electronic and telecommunication equipment and household usage in China. PBDE temporal trends in core S1 located at rural area mainly reflected the regional and national inputs deriving from long distance atmospheric transport, and the positive correlations between PBDE concentration in core S1 and gross domestic product (GDP) and household appliances production volumes (HPVs) were observed. PBDE inputs at site S3 mainly include the transport of contaminated water and re-suspended fine sediment particles from the upstream site S2, which was located in the industrial area and adjacent to e-waste recycling area. The government efforts to protect the environment and improve the e-waste management resulted in the progressive decrease trends in PBDE concentrations in cores S2 and S3.