{Reference Type}: Journal Article {Title}: Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTLqOC-Dt5-1. {Author}: Ma J;Liu J;Pei W;Ma Q;Wang N;Zhang X;Cui Y;Li D;Liu G;Wu M;Zang X;Song J;Zhang J;Yu S;Yu J; {Journal}: Plant Sci {Volume}: 286 {Issue}: 0 {Year}: Sep 2019 {Factor}: 5.363 {DOI}: 10.1016/j.plantsci.2019.05.019 {Abstract}: Cottonseed oil is one of the most important renewable resources for edible oil and biodiesel. To detect QTLs associated with cottonseed oil content (OC) and identify candidate genes that regulate oil biosynthesis, a panel of upland cotton germplasm lines was selected among those previously used to perform GWASs in China. In the present study, 13 QTLs associated with 53 common SNPs on 13 chromosomes were identified in multiple environments based on 15,369 polymorphic SNPs using the Cotton63 KSNP array. Of these, the OC QTL qOC-Dt5-1 delineated by nine SNPs occurred in a confidence interval of 4 SSRs with previously reported OC QTLs. A combined transcriptome and qRT-PCR analysis revealed that a peroxidase gene (GhPRXR1) was predominantly expressed during the middle-late stage (20-35 days post anthesis) of ovule development. The overexpression of GhPRXR1 in yeast significantly increased the OC by 20.01-37.25 %. Suppression of GhPRXR1 gene expression in the virus-induced gene-silenced cotton reduced the OC by 18.11%. Our results contribute to identifying more OC QTLs and verifying a candidate gene that influences cottonseed oil biosynthesis.