{Reference Type}: Journal Article {Title}: Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli. {Author}: Liu B;Xiang S;Zhao G;Wang B;Ma Y;Liu W;Tao Y; {Journal}: Metab Eng {Volume}: 51 {Issue}: 0 {Year}: 01 2019 {Factor}: 8.829 {DOI}: 10.1016/j.ymben.2018.10.003 {Abstract}: The production of chemicals from renewable biomass resources is usually limited by factors including high-cost processes and low efficiency of biosynthetic pathways. Fatty acids (FAs) are an ideal alternative biomass. Their advantages include high-efficiently producing acetyl-CoA and reducing power, coupling chemical production with CO2 fixation, and the fact that they are readily obtained from inexpensive feedstocks. The important platform chemical 3-hydroxypropionate (3HP) can be produced from FAs as the feedstock with a theoretical yield of 2.49 g/g, much higher than the theoretical yield from other feedstocks. In this study, we first systematically analyzed the limiting factors in FA-utilization pathways in Escherichia coli. Then, we optimized FA utilization in Escherichia coli by using a combination of metabolic engineering and optimization of fermentation conditions. The 3HP biosynthesis module was introduced into a FA-utilizing strain, and the flux balance was finely optimized to maximize 3HP production. The resulting strain was able to produce 3HP from FAs with a yield of 1.56 g/g, and was able to produce 3HP to a concentration of 52 g/L from FAs in a 5-L fermentation process. The strain also could produce 3HP from various type of FAs feedstock including gutter oil. This is the first report of a technique for the efficient production of the platform chemical 3HP from FAs.