{Reference Type}: Journal Article {Title}: The sequences encoded by immunoglobulin diversity (DH ) gene segments play key roles in controlling B-cell development, antigen-binding site diversity, and antibody production. {Author}: Khass M;Vale AM;Burrows PD;Schroeder HW; {Journal}: Immunol Rev {Volume}: 284 {Issue}: 1 {Year}: 07 2018 {Factor}: 10.983 {DOI}: 10.1111/imr.12669 {Abstract}: Although at first glance the diversity of the immunoglobulin repertoire appears random, there are a number of mechanisms that act to constrain diversity. For example, key mechanisms controlling the diversity of the third complementarity determining region of the immunoglobulin heavy chain (CDR-H3) include natural selection of germline diversity (DH ) gene segment sequence and somatic selection upon passage through successive B-cell developmental checkpoints. To test the role of DH gene segment sequence, we generated a panel of mice limited to the use of a single germline or frameshifted DH gene segment. Specific individual amino acids within core DH gene segment sequence heavily influenced the absolute numbers of developing and mature B-cell subsets, antibody production, epitope recognition, protection against pathogen challenge, and susceptibility to the production of autoreactive antibodies. At the tip of the antigen-binding loop (PDB position 101) in CDR-H3, both natural (germline) and somatic selection favored tyrosine while disfavoring the presence of hydrophobic amino acids. Enrichment for arginine in CDR-H3 appeared to broaden recognition of epitopes of varying hydrophobicity, but led to diminished binding intensity and an increased likelihood of generating potentially pathogenic dsDNA-binding autoreactive antibodies. The phenotype of altering the sequence of the DH was recessive for T-independent antibody production, but dominant for T-cell-dependent responses. Our work suggests that the antibody repertoire is structured, with the sequence of individual DH selected by evolution to preferentially generate an apparently preferred category of antigen-binding sites. The result of this structured approach appears to be a repertoire that has been adapted, or optimized, to produce protective antibodies for a wide range of pathogen epitopes while reducing the likelihood of generating autoreactive specificities.