{Reference Type}: Journal Article {Title}: Different Gelation and Self-Sorting Properties of Two Isomeric Polyamides Owing to the Parallel versus Anti-Parallel Alignment of Backbone Dipoles. {Author}: Leung CF;Chow HF; {Journal}: Chemistry {Volume}: 23 {Issue}: 20 {Year}: Apr 2017 6 {Factor}: 5.02 {DOI}: 10.1002/chem.201605819 {Abstract}: Two isomeric bottlebrush polyamides P-1 and A-1, with the same repeating monomer dipole units aligned along the polymer backbone in pseudo-parallel and pseudo-antiparallel fashion, respectively, were synthesized and characterized. Both polymers can form thermoreversible gels with aromatic solvents but P-1 was found to show inferior gelation strength compared with that of A-1. Furthermore, despite their close structural resemblance, a 1:1 mixture of the P-1 and A-1 polymers was shown to exhibit self-sorting in the gel state. Gel formation was found to be a kinetically trapped process through hydrogen bonding, π-π stacking interactions, and side chain interdigitation. The different gelation and self-sorting properties can be explained by the local dipole-dipole interactions originating from the different modes of backbone dipole alignment. In single gel systems, the antiparallel-aligned dipoles in A-1 facilitated a more compact molecular packing owing to the enthalpically more favorable polymer chain association. On the other hand, the parallel-aligned dipoles in P-1 gave rise to a less stable head-to-head packing, which had difficulties to convert to the more stable head-to-tail packing in a kinetically trapped environment. In the mixed gel system, it is the unfavorable hetero-polymer mismatch dipole-dipole interaction that inhibited the mixing of the A-1 and P-1 polymers and led to self-sorting.