{Reference Type}: Journal Article {Title}: Neuroelectric mechanisms applied to low frequency electric and magnetic field exposure guidelines--part II: non sinusoidal waveforms. {Author}: Reilly JP;Diamant AM; {Journal}: Health Phys {Volume}: 83 {Issue}: 3 {Year}: Sep 2002 {Factor}: 2.922 {DOI}: 10.1097/00004032-200209000-00005 {Abstract}: Standards for human exposure to electromagnetic fields typically express maximum permissible exposure limits as a function of frequency. Often, these limits have been derived from experiments or theoretical models involving sinusoidal waveforms. In many practical situations, however, the relevant waveforms of interest may not be sinusoidal, such as with waveforms having harmonic distortion, or with pulsed waveforms. This paper evaluates methods for applying sinusoidal exposure standards to non-sinusoidal waveforms in the frequency regime below a few MHz where electrostimulation is the dominant mechanism. Waveforms treated include those of a pulsed or mixed frequency variety. We evaluate acceptance criteria for mixed frequency exposure using summation formulae cited by IEEE C95.1, ICNIRP, and NRPB. This is carried out using a Fourier synthesis of various waveshapes. Also evaluated is an acceptance criterion based on the peak of the exposure waveform. Excitation thresholds are evaluated using a myelinated nerve model that accounts for the nonlinear electrodynamics of the neural membrane. It is shown that a method based on the peak and phase duration of the in situ field waveform provides a typically conservative test for compliance with non sinusoidal waveforms. An alternate method, based on amplitude summation of the Fourier components of the applied waveforms, can also provide a meaningful test, albeit a more conservative one.