%0 Journal Article %T Ex vivo delivery of dsRNA targeting ryanodine receptors for control of Tuta absoluta. %A Askew WT %A Edwards MG %A Gatehouse AMR %J Pest Manag Sci %V 0 %N 0 %D 2024 Aug 16 %M 39148493 %F 4.462 %R 10.1002/ps.8368 %X BACKGROUND: RNA interference (RNAi) is an endogenous eukaryote viral defence mechanism representing a unique form of post-transcriptional gene silencing. Owing to its high specificity, this technology is being developed for use in dsRNA-based biopesticides for control of pest insects. Whilst many lepidopteran species are recalcitrant to RNAi, Tuta absoluta, a polyphagous insect responsible for extensive crop damage, is sensitive. Ryanodine receptors (RyRs) are intracellular calcium channels regulating calcium ion (Ca2+) release. The chemical pesticide class of diamides functions agonistically against lepidopteran RyR, resulting in uncontrolled Ca2+ release, feeding cessation and death. Resistance to diamides has emerged in T. absoluta, derived from RyR point mutations.
RESULTS: RNAi was used to target RyR transcripts of T. absoluta. Data presented here demonstrate the systemic use of exogenous T. absoluta RyR-specific (TaRy) dsRNA in tomato plants (Solanum lycopersicum) to significantly downregulate expression of the target gene, resulting in significant insect mortality and reduced leaf damage. Using a leaflet delivery system, daily dosing of 3 μg TaRy dsRNA for 72 h resulted in 50% downregulation of the target gene and 50% reduction in tomato leaf damage. Corrected larval mortality and adult emergence were reduced by 38% and 33%, respectively. TaRy dsRNA demonstrated stability in tomato leaves ≤72 h after dosing.
CONCLUSIONS: This work identifies TaRy as a promising target for RNAi control of this widespread crop pest. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.