%0 Journal Article %T Lightweight Calcium-Silicate-Hydrate Nacre with High Strength and High Toughness. %A Wang Y %A Bao Y %A Meng W %J ACS Nano %V 18 %N 34 %D 2024 Aug 27 %M 39141799 %F 18.027 %R 10.1021/acsnano.4c08200 %X Low flexural strength and toughness have posed enduring challenges to cementitious materials. As the main hydration product of cement, calcium silicate hydrate (C-S-H) plays important roles in the mechanical performance of cementitious materials while exhibiting random microstructures with pores and defects, which hinder mechanical enhancement. Inspired by the "brick-and-mortar" microstructure of natural nacre, this paper presents a method combining freeze casting, freeze-drying, in situ polymerization, and hot pressing to fabricate C-S-H nacre with high flexural strength, high toughness, and lightweight. Poly(acrylamide-co-acrylic acid) was used to disperse C-S-H and toughen C-S-H building blocks, which function as "bricks", while poly(methyl methacrylate) was impregnated as "mortar". The flexural strength, toughness, and density of C-S-H nacre reached 124 MPa, 5173 kJ/m3, and 0.98 g/cm3, respectively. The flexural strength and toughness of the C-S-H nacre are 18 and 1230 times higher than those of cement paste, respectively, with a 60% reduction in density, outperforming existing cementitious materials and natural nacre. This research establishes the relationship between material composition, fabrication process, microstructure, and mechanical performance, facilitating the design of high-performance C-S-H-based and cement-based composites for scalable engineering applications.