%0 Journal Article %T Deciphering the Complexities of Pulmonary Hypertension: The Emergent Role of Single-Cell Omics. %A Rafikov R %A de Jesus Perez V %A Dekan A %A Kudryashova TV %A Rafikova O %J Am J Respir Cell Mol Biol %V 0 %N 0 %D 2024 Aug 14 %M 39141563 %F 7.748 %R 10.1165/rcmb.2024-0145PS %X Expanding upon the critical advancements brought forth by single-cell omics in pulmonary hypertension (PH) research, this review delves deep into how these technologies have been piloted in a new era of understanding this complex disease. By leveraging the power of single cell transcriptomics (scRNA-seq), researchers can now dissect the complicated cellular ecosystem of the lungs, examining the key players such as endothelial cells, smooth muscle cells, pericytes, and immune cells, and their unique roles in the pathogenesis of PH. This more granular view is beyond the limitations of traditional bulk analysis, allowing for the identification of novel therapeutic targets previously obscured in the aggregated data. Connectome analysis based on single-cell omics of the cells involved in pathological changes can reveal a clearer picture of the cellular interactions and transitions in the cellular subtypes. Furthermore, the review acknowledges the challenges that lie ahead, including the need for enhancing the resolution of scRNA-seq to capture even finer details of cellular changes, overcoming logistical barriers in processing human tissue samples, and the necessity of integrating diverse omics approaches to fully comprehend the molecular underpinnings of PH. The promise of these single-cell technologies is immense, offering the potential for targeted drug development and the discovery of biomarkers for early diagnosis and disease monitoring. Through these advancements, the field moves closer to realizing the goal of precision medicine for patients with PH.