%0 Journal Article %T Optimization and mechanism studies for the biosorption of rare earth ions by Yarrowia lipolytica. %A Shen L %A Yu X %A Zhou H %A Wang J %A Zhao H %A Qiu G %A Chen Z %J Environ Sci Pollut Res Int %V 31 %N 39 %D 2024 Aug 13 %M 39136922 %F 5.19 %R 10.1007/s11356-024-34660-5 %X Research on the recovery of rare earth elements from wastewater has attracted increasing attention. Compared with other methods, biosorption is a simple, efficient, and environmentally friendly method for rare earth wastewater treatment, which has greater prospects for development. The objective of this study was to investigate the biosorption behavior and mechanism of Yarrowia lipolytica for five rare earth ions (La3⁺, Nd3⁺, Er3⁺, Y3⁺, and Sm3⁺) with a particular focus on biosorption behavior, biosorption kinetics, and biosorption isotherm. It was demonstrated that the biosorption capacity of Y. lipolytica at optimal conditions was 76.80 mg/g. It was discovered that the biosorption process complied with the pseudo-second-order kinetic model and the Langmuir biosorption isotherm, indicating that Y. lipolytica employed a monolayer chemical biosorption process to biosorb rare earth ions. Characterization analysis demonstrated that the primary functional groups involved in rare earth ion biosorption were amino, carboxyl, and hydroxyl groups. The cooperative biosorption of rare earth ions by Y. lipolytica was facilitated by means of surface complexation, ion exchange, and electrostatic interactions. These findings suggest that Y. lipolytica has the potential to be an effective biosorbent for the removal of rare earth elements from wastewater.