%0 Journal Article %T NDRG1 enhances the sensitivity to Cetuximab by promoting Stat1 ubiquitylation in colorectal cancer. %A Yang G %A Ding C %A Yang X %A Jiang J %A He S %A Shao Y %A Zhang E %A Fan X %A Zhou X %A Huang L %A Xinyu Zhang C %A Sun J %A Wang Y %A Zang L %A Zheng M %A Ma J %J J Adv Res %V 0 %N 0 %D 2024 Aug 9 %M 39128702 %F 12.822 %R 10.1016/j.jare.2024.07.035 %X BACKGROUND: Cetuximab (CTX) is an effective targeted drug for the treatment of metastatic colorectal cancer, but it is effective only in patients with wild-type KRAS genes. Even in this subset of patients, the sensitivity of CTX in patients with right hemi-colon cancer is much lower than that in patients with left hemi-colon cancer. This significantly limits its clinical application. Therefore, further elucidation of the underlying molecular mechanisms is needed. N-myc downstream-regulated gene 1 (NDRG1) plays an important role in solid tumor invasion and metastasis, but whether it can influence CTX sensitivity has not been thoroughly investigated.
OBJECTIVE: Our study aimed to identify a novel mechanism by which NDRG1 affects CTX sensitivity.
METHODS: Through mass spectrometry analysis of our previously constructed CTX-resistant RKO and HCT116 cells, we found that the signal transducer and activator of transcription-1 (Stat1) might be a potential target of NDRG1. By knocking out NDRG1 or/and Stat1 genes, we then applied the loss-of-function experiments to explore the regulatory relationship between NDRG1 and Stat1 and their roles in the cell cycle, epithelial-mesenchymal transition (EMT), and the sensitivity to CTX in these two colorectal cancer (CRC) cells. Finally, we used the nude-mouse transplanted tumor model and human CRC samples to verify the expression of NDRG1 and Stat1 and their impact on CTX sensitivity in vivo.
RESULTS: Stat1 was upregulated in CTX-resistant cells, whereas NDRG1 was downregulated. Mechanically, NDRG1 was inversely correlated with Stat1 expression. It suppressed CRC cell proliferation, migration, and invasion, and promoted apoptosis and epithelial-mesenchymal transition (EMT) by inhibiting Stat1. In addition, NDRG1 directly interacted with Stat1 and promoted Smurf1-induced Stat1 ubiquitination. Importantly, this novel NDRG1-dependent regulatory loop also enhanced CTX sensitivity both in vitro and in vivo.
CONCLUSIONS: Our study revealed that NDRG1 enhanced the sensitivity to Cetuximab by inhibiting Stat1 expression and promoting its ubiquitination in colorectal cancer, elucidating NDRG1 might be a potential therapeutic target for refractory CTX-resistant CRC tumors. But its clinical value still needs to be validated in a larger sample size as well as a different genetic background.