%0 Journal Article %T Comparative mathematical modeling reveals the differential effects of high-fat diet and ketogenic diet on the PI3K-Akt signaling pathway in heart. %A Tseng YY %J Nutr Metab (Lond) %V 21 %N 1 %D 2024 Aug 9 %M 39123207 %F 4.654 %R 10.1186/s12986-024-00840-w %X BACKGROUND: Obesity is a global health concern associated with increased risk of diseases like cardiovascular conditions including ischemic heart disease, a leading cause of mortality. The ketogenic diet (KD) has potential therapeutic applications in managing obesity and related disorders. However, the intricate effects of KD on diverse physiological conditions remain incompletely understood. The PI3K-Akt signaling pathway is critical for heart health, and its dysregulation implicates numerous cardiac diseases.
METHODS: We developed comprehensive mathematical models of the PI3K-Akt signaling pathway under high-fat diet (HFD) and KD conditions to elucidate their differential impacts and quantify apoptosis. Simulations and sensitivity analysis were performed.
RESULTS: Simulations demonstrate that KD can reduce the activation of key molecules like Erk and Trp53 to mitigate apoptosis compared to HFD. Findings align with experimental data, highlighting the potential cardiac benefits of KD. Sensitivity analysis identifies regulators like Trp53 and Bcl2l1 that critically influence apoptosis under HFD.
CONCLUSIONS: Mathematical modeling provides quantitative insights into the contrasting effects of HFD and KD on cardiac PI3K-Akt signaling and apoptosis. Findings have implications for precision nutrition and developing novel therapeutic strategies to address obesity-related cardiovascular diseases.