%0 Journal Article %T The construction of ofloxacin detection in fish matrix based on a shark-derived single-domain antibody. %A Liu C %A Chen Y %A Lin H %A Cao L %A Wang K %A Wang X %A Sui J %J Anal Chim Acta %V 1319 %N 0 %D 2024 Aug 29 %M 39122284 %F 6.911 %R 10.1016/j.aca.2024.342986 %X BACKGROUND: Due to the serious issue of ofloxacin (OFL) abuse, there is an increasingly urgent need for accurate and rapid detection of OFL. Immunoassay has become the "golden method" for detecting OFL in complex matrix beneficial to its applicability for a large-scale screening, rapidity, and simplicity. However, traditional antibodies used in immunoassay present challenges such as time-consuming preparation, unstable sensitivity and specificity, and difficulty in directional evolution. In this paper, we successfully developed an OFL detection method based on a shark-derived single-domain antibody (ssdAb) to address these issues.
RESULTS: Using phage display technology and a heterologous expression system, OFL-specific clones 1O11, 1O13, 1O17, 1O19, 1O21, and 2O26 were successfully isolated and expressed in soluble form. Among all OFL-specific ssdAbs, the 1O17 ssdAb exhibited the highest binding affinity to OFL in a concentration-dependence manner. The limit of detection (IC10) of 1O17 ssdAb was calculated as 0.34 ng/mL with a detection range of 3.40-1315.00 ng/mL, and its cross reactivity with other analogs was calculated to be less than 5.98 %, indicating high specificity and sensitivity. Molecular docking results revealed that 100Trp and 101Arg located in the CDR3 region of 1O17 ssdAb were crucial for OFL binding. In fish matrix performance tests, the 1O17 ssdAb did not demonstrate severe matrix interference in OFL-negative fish matrix, achieving satisfactory recovery rates ranging from 83.04 % to 108.82 % with high reproducibility.
CONCLUSIONS: This research provides a new and efficient OFL detection recognition element with significant potential in immunoassay applications, broadening the application scenarios of ssdAbs. It offers valuable insights into the structure-activity relationship between ssdAbs and small molecules, laying a theoretical foundation for the further directional modification and maturation of ssdAbs in subsequent applications.