%0 Journal Article %T Isoliquiritigenin diminishes invasiveness of human nasopharyngeal carcinoma cells associating with inhibition of MMP-2 expression and STAT3 signalling. %A Lu YT %A Hsin CH %A Kao SH %A Ho YT %A Yeh FL %A Yang SF %A Lin CW %J J Cell Mol Med %V 28 %N 15 %D 2024 Aug %M 39121240 %F 5.295 %R 10.1111/jcmm.18586 %X Nasopharyngeal carcinoma (NPC) is prevalent in Asia and exhibits highly metastatic characteristics, leading to uncontrolled disease progression. Isoliquiritigenin (ISL) have attracted attention due to their diverse biological and pharmacological properties, including anticancer activities. However, the impact of ISL on the invasive and migratory ability of NPC remains poorly understood. Hence, this study aimed to investigate the in vitro anti-metastatic effects of ISL on NPC cells and elucidate the underlying signalling pathways. Human NPC cell NPC-39 and NPC-BM were utilized as cell models. Migratory and invasive capabilities were evaluated through wound healing and invasion assays, respectively. Gelatin zymography was employed to demonstrate matrix metalloproteinase-2 (MMP-2) activity, while western blotting was conducted to analyse protein expression levels and explore signalling cascades. Overexpression of signal transducer and activator of transcription 3 (STAT3) was carried out by transduction of STAT3-expressing vector. Our findings revealed that ISL effectively suppressed the migration and invasion of NPC cells. Gelatin zymography and Western blotting assays demonstrated that ISL treatment led to a reduction in MMP-2 enzyme activity and protein expression. Investigation of signalling cascades revealed that ISL treatment resulted in the inhibition of STAT3 phosphorylation. Moreover, overexpression of STAT3 restored the migratory ability of NPC cells in the presence of ISL. Collectively, these findings indicate that ISL inhibits the migration and invasion of NPC cells associating with MMP-2 downregulation through suppressing STAT3 activation. This suggests that ISL has an anti-metastatic effect on NPC cells and has potential therapeutic benefit for NPC treatment.