%0 Journal Article %T HMGB1 released from pyroptotic vascular endothelial cells promotes immune disorders in exertional heatstroke. %A Yu C %A Huang Y %A Xie J %A Duan C %A Liu S %A Zhao W %A Wang Y %A Zhuang R %A Li J %A Yin W %J Int J Hyperthermia %V 41 %N 1 %D 2024 %M 39117343 %F 3.753 %R 10.1080/02656736.2024.2378867 %X UNASSIGNED: Exertional heatstroke (EHS) mainly occurs in healthy young people with rapid onset and high mortality. EHS immune disorders can cause systemic inflammatory responses and multiple organ failure; however, the underlying mechanisms remain unclear. As high mobility group box 1 (HMGB1) is a prototypical alarmin that activates inflammatory and immune responses, this study aimed to investigate the effect and mechanism of HMGB1 in the pathogenesis of EHS.
UNASSIGNED: Peripheral blood mononuclear cell (PBMC) transcriptome sequencing of healthy volunteers, classical heatstroke patients, and EHS patients was performed. A mouse model of EHS was established and murine tissue damage was evaluated by H&E staining. HMGB1 localization and release were visualized using immunofluorescence staining. Human umbilical vein endothelial cells (HUVECs) and THP-1 cells were co-cultured to study the effects of HMGB1 on macrophages. A neutralizing anti-HMGB1 antibody was used to evaluate the efficacy of EHS treatment in mice.
UNASSIGNED: Plasma and serum HMGB1 levels were significantly increased in EHS patients or mice. EHS-induced endothelial cell pyroptosis promoted HMGB1 release in mice. HMGB1 derived from endothelial cell pyroptosis enhanced macrophage pyroptosis, resulting in immune disorders under EHS conditions. Administration of anti-HMGB1 markedly alleviated tissue injury and systemic inflammatory responses after EHS.
UNASSIGNED: The release of HMGB1 from pyroptotic endothelial cells after EHS promotes pyroptosis of macrophages and systemic inflammatory response, and HMGB1-neutralizing antibody therapy has good application prospects for EHS.