%0 Journal Article %T An in-vitro model for bacteria-related catheter encrustations. %A Pannek J %A Mahler J %A Kurmann C %A Widmer A %A Krebs J %A Wöllner J %J World J Urol %V 42 %N 1 %D 2024 Aug 7 %M 39110241 %F 3.661 %R 10.1007/s00345-024-05191-y %X OBJECTIVE: About 50% of individuals with long-term indwelling catheters are affected by catheter encrustations and bladder stone formation. Therefore, prophylaxis of catheter encrustations is important. Currently, however, neither an established prophylaxis nor a standardized in-vitro model to test different measures exist. We have therefore developed and qualitatively evaluated an in-vitro model of catheter encrustation.
METHODS: Size 14 French suprapubic catheters were incubated under sterile conditions at 37 degrees Celsius in five different media: (1) sterile artificial urine (n = 16), (2) artificial urine with E. coli (n = 8), (3) with Pseudomonas aeruginosa (n = 8), (4) with Proteus mirabilis (n = 8), and (5) with a mix of these three strains (n = 8). Catheter balloons were inflated either a glycerine or a bactericidal solution. After 6 weeks, the catheters were removed from the solution, dried, and weighed, and a photometric determination of the retrieved encrustations was performed.
RESULTS: Most frequently and pronounced encrustations were detected in the Pseudomonas group. The median weight of these encrustations (50% struvite and brushite) was 84.4 mg (47.7 mg / 127.3 mg). Even on catheters stored in sterile urine, encrustations (69.2% struvite) were found. Bacterial growth was not affected by the medium used for catheter blockage.
CONCLUSIONS: Although in-vitro models appear to be limited because they lack "the human factor", they are valuable for systematically assessing physico-chemical factors affecting encrustations. Therefore, our model, being reliable and cost-effective, may foster further research despite its limitations.