%0 English Abstract %T [Anti-myocardial ischemic injury effects and mechanisms of cryptotanshinone in regulating macrophage polarisation through Dectin-1 signalling pathway]. %A Fan YM %A Fang LY %A Fang ZR %A Li MY %A Shi TT %A Guo Y %A Chen L %A Wang H %J Zhongguo Zhong Yao Za Zhi %V 49 %N 14 %D 2024 Jul %M 39099364 暂无%R 10.19540/j.cnki.cjcmm.20240407.201 %X The aim of this study was to investigate the potential mechanism by which cryptotanshinone(CTS) may exert its anti-myo-cardial ischemic effect through the regulation of macrophage polarization via the dendritic cell-associated C-type lectin 1(Dectin-1) signaling pathway. Male C57BL/6 mice, aged six weeks, were utilized to establish myocardial ischemia models and were subsequently divided into five groups: sham, model, CTS low-dose(21 mg·kg~(-1)·d~(-1)), CTS high-dose(84 mg·kg~(-1)·d~(-1)), and dapagliflozin(0.14 mg·kg~(-1)·d~(-1)). The cardiac function, serum enzyme levels, Dectin-1 expression, macrophage polarization, and neutrophil infiltration in the myocardial infarction area were assessed in each group. An in vitro model of M1-type macrophages was constructed using lipopolysaccharide/interfe-ron-γ(LPS/IFN-γ) stimulated RAW264.7 cells to investigate the impact of CTS on macrophage polarization and to examine alterations in key proteins within the Dectin-1 signaling pathway. In the CTS group, compared to the model group mice, there was a significant improvement in the cardiac function and myocardial injury, along with a notable increase in the ratio of M2/M1-type macrophages in the myocardial infarcted area and a decrease in neutrophil infiltration. Additionally, Dectin-1 exhibited low expression. The results of in vitro experiments demonstrated that CTS can decrease the expression of M1-type marker genes and increase the expression of M2-type marker genes. Besides, it can decrease the levels of Dectin-1 and the phosphorylation of its associated proteins, including spleen tyrosine kinase(Syk), protein kinase B(Akt), nuclear factor-kappaB p65(NF-κB p65), and extracellular signal-regulated protein kinases(ERK1/2). Additionally, CTS was found to enhance the phosphorylation of signal transducer and activator of transcription-6(STAT6). The above results suggest that CTS exerts its anti-myocardial ischemic injury effect by regulating macrophage polarization through the Dectin-1 signaling pathway.