%0 Journal Article %T Acidic biofilm microenvironment-responsive ROS generation via a protein nanoassembly with hypoxia-relieving and GSH-depleting capabilities for efficient elimination of biofilm bacteria. %A Li J %A Sun M %A Tang X %A Liu Y %A Ou C %A Luo Y %A Wang L %A Hai L %A Deng L %A He D %J Acta Biomater %V 0 %N 0 %D 2024 Aug 2 %M 39097126 %F 10.633 %R 10.1016/j.actbio.2024.07.044 %X Reactive oxygen species (ROS) are widely considered to the effective therapeutics for fighting bacterial infections especially those associated with biofilm. However, biofilm microenvironments including hypoxia, limited H2O2, and high glutathione (GSH) level seriously limit the therapeutic efficacy of ROS-based strategies. Herein, we have developed an acidic biofilm microenvironment-responsive antibacterial nanoplatform consisting of copper-dopped bovine serum albumin (CBSA) loaded with copper peroxide (CuO2) synthesized in situ and indocyanine green (ICG). The three-in-one nanotherapeutics (CuO2/ICG@CBSA) are capable of releasing Cu2+ and H2O2 in a slightly acidic environment, where Cu2+ catalyzes the conversion of H2O2 into hydroxyl radical (•OH) and consumes the highly expressed GSH to disrupt the redox homeostasis. With the assistance of an 808 nm laser, the loaded ICG not only triggers the production of singlet oxygen (1O2) by a photodynamic process, but also provides photonic hyperpyrexia that further promotes the Fenton-like reaction for enhancing •OH production and induces thermal decomposition of CuO2 for the O2-self-supplying 1O2 generation. The CuO2/ICG@CBSA with laser irradiation demonstrates photothermal-augmented multi-mode synergistic bactericidal effect and is capable of inhibiting biofilm formation and eradicating the biofilm bacteria. Further in vivo experiments suggest that the CuO2/ICG@CBSA can effectively eliminate wound infections and accelerate wound healing. The proposed three-in-one nanotherapeutics with O2/H2O2-self-supplied ROS generating capability show great potential in treating biofilm-associated bacterial infections. STATEMENT OF SIGNIFICANCE: Here, we have developed an acidic biofilm microenvironment-responsive nanoplatform consisting of copper-dopped bovine serum albumin (CBSA) loaded with copper peroxide (CuO2) synthesized in situ and indocyanine green (ICG). The nanotherapeutics (CuO2/ICG@CBSA) are capable of releasing Cu2+ and H2O2 in an acidic environment, where Cu2+ catalyzes the conversion of H2O2 into •OH and consumes the overexpressed GSH to improve oxidative stress. With the aid of an 808 nm laser, ICG provides photonic hyperpyrexia for enhancing •OH production, and triggers O2-self-supplying 1O2 generation. CuO2/ICG@CBSA with laser irradiation displays photothermal-augmented multi-mode antibacterial and antibiofilm effect. Further in vivo experiments prove that CuO2/ICG@CBSA effectively eliminates wound infection and promotes wound healing. The proposed three-in-one nanotherapeutics show great potential in treating biofilm-associated bacterial infections.